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We apply the Bogoliubov-Krilov method of averaging to the study of the stability of the �-mode solution
�N /2 one-mode nonlinear solution� of the Fermi-Pasta-Ulam-� system, with negative values of the nonlinearity
parameter � in the Hamiltonian of the system. The analysis is made as a function of the number N of the
particles and of the product �=����, where � is the energy density. The results of this application are in
excellent agreement with those obtained by the direct integration of motion equation.
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For a periodic Fermi-Pasta-Ulam �FPU�–� chain �1�
with an even number N of oscillators and periodic conditions
there are exact one-mode nonlinear solutions �OMSs�
corresponding to the values of mode number n,
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such that, if only one of these modes is initially excited, it
evolves without transferring energy to any other mode �2�.
An important problem is the stability of these OMSs against
a generic perturbation; the study of the stability presents
very interesting and intriguing aspects and it is in general
connected with the problem of equipartition of energy and
transition to chaos in dynamical systems.

In a recent paper �3� we have revisited the problem of
stability of the OMSs. We made a numerical study of the
stability of these nonlinear solutions as a function of the
number N of particles and of the product �=����, where � is
the energy density and � is the nonlinearity parameter of the
FPU Hamiltonian. In the numerical analysis, extensively
made for ��0 and n=N /2, no external perturbation for the
OMSs was considered, the only perturbation being that in-
troduced by computational errors in the numerical integra-
tion of motion equations. This simple method confirms the
previous result �2,4� on the energy-density threshold �t ob-
tained with a Floquet analysis of the problem of stability that
asymptotically �t=�2 / �3N2�.

In this paper we apply the numerical method used in Ref.
�3� in order to study the stability of the N /2 mode �� mode�
with ��0 as a function of N and �. Our numerical results
confirm the previous result reported in Ref. �5� that there is
an energy-density threshold independent of N for large val-
ues of N; in particular, we find that the value �t decreases
with N and converges to the value 0.2140. We show that this
behavior of �t, as a function of N, can be explained in a very
simple and elegant way using the Bogoliubov-Krylov �BK�
method of averaging �6,7�.

The FPU-� system is a one-dimensional chain of N equal-
mass oscillators, with weakly nonlinear nearest-neighbor in-
teraction. Calling qn and pn the coordinates and the momenta
of the oscillators, the Hamiltonian is

H =
1

2�
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pi
2 +
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2�
i=1

N

�qi+1 − qi�2 +
�

4 �
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N

�qi+1 − qi�4 �2�

with qN+1=q1. All quantities in Eq. �2� are dimensionless.
If we introduce the normal coordinates Qi and Pi of the

normal modes through the relations

Qi = �
j=1

N

Sijqj , �3�
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N

Sijpj , �4�
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the harmonic energy of mode i is

Ei = 1
2 �Pi

2 + �i
2Qi

2� , �6�

where, for periodic boundary conditions,

�i
2 = 4 sin2 �i

N
. �7�

The Hamiltonian equations in the variables qi and pi, ob-
tained from Eq. �2� and integrated by standard methods, al-
low us to calculate the normal modes and the energy of each
mode.

Consider now the case n=N /2. Let us put Q=QN/2,
P= PN/2, and �=�N/2. The equation of motion for the excited
OMS amplitude Q is �2�

Q
··

= − �2Q − �
�4

N
Q3. �8�

We recall that the dynamical properties of the FPU-� sys-
tem depend only on the product �=����. In all the numerical
experiments, as we will see in the following, we fix the
value of � and we change the value of the energy density
�=E /N, where
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2N
	 �9�

is the energy of the nonlinear one mode N /2. We will excite

the N /2 mode at t=0 always putting Q�0 and P= Q̇=0.
Then, initially, all the energy is the potential energy V,
associated to Eq. �8�, given by

V =
1

2
��2Q2 + �

�4Q4

2N
	 . �10�

Unlike the case ��0, with ��0 the choice of the energy of
the system does not determine unequivocally the initial value
Q0 of Q. The extremal points of the potential V are the value
Q=0, which is a minimum, and the points Q= ± 1

�
� N

��� , which
are points of maximum, where V= N

4��� . For a given value of
the energy density in the interval 0���

1
4��� , we have four

possible initial values of Q, namely

Q0 = ±� N

�2���
�1 ± �1 − 4����� . �11�

Only the “internal” solutions �minus sign under the square
root�, as initial conditions for Eq. �8�, give bounded
solutions.

The solution of Eq. �8� with ��0 and initial conditions

Q�0�=Q0 and Q
·

�0�=0 is

Q�t� = Q0 sn�	t + K;k2� , �12�

where sn is the Jacobi elliptic sine with period T=4K�k� /	,
K�k� is the complete elliptic integral of the first kind and, in
terms of the energy density

k2 =
1 − �1 − 4����

1 + �1 − 4����
�13�

and

	2 =
�2

1 + k2 . �14�

Let us now suppose that only the mode n=N /2 is excited.
If 
Qr is the error on the normal coordinate Qr, the equation
for the rth perturbed mode is �2�


Q̈r = − �r
2
1 +

12�

N
QN/2

2 �
Qr. �15�

The stability properties of the N /2 mode can be obtained
analytically, both with ��0 and ��0, by studying the sta-
bility of the solutions of Eq. �15�, for all the perturbed linear
modes. The case ��0 has been extensively studied in Refs.
�2–5�. In this paper we investigate the case ��0. For the
numerical analysis we utilize the same numerical method
used in Ref. �3�; the equations of motion in the variables
qi , pi are integrated by means of a bilateral symplectic algo-
rithm �8�. Numerical integration introduces some errors in
the values of the variables qi and pi; these errors can excite
linear modes of the system, which can make unstable the
OMS initially excited. We find that there is a threshold value

for the product �=����, beyond which the OMS is unstable.
In all the numerical experiments we put �=−1 and

change the value of the energy density �=E /N. We excite the

N /2 mode at t=0 always putting Q�0 and Q̇= P=0. From
the inverse transformations of Eqs. �3� and �4�, the initial
values of qi�0� and pi�0� are obtained.

The behavior of �t as a function of N varying between 4
and 150 is shown in Fig. 1; for large values of N, the con-
stant value �t=0.2140 is obtained. This means that, contrary
to the case ��0, there always exists a stability range for the
energy density.

The asymptotic value for very large values of N has been
obtained theoretically in Ref. �5� using the Hill’s determinant
approach for the study of the Lamé’s equations describing
directly, in the variables qi , pi, the perturbed modes and con-
sidering up to 120 terms in the Fourier series expansion of
elliptic functions.

Here we show a method that explains the behavior of �t
for all values of N. Our approach is based on the BK method
of averaging. First of all, we remark that with ��0, contrary
to the case ��0, the term in square brackets in Eq. �15� can
assume negative values by increasing energy, changing
drastically the stability properties of the N /2 mode.

Let us write Eq. �15� in the form

dx2

dt2 + �r
2f�t�x = 0, �16�

with f�t� periodic of period T. The BK method says that the
Floquet’s frequency of Eq. �16�, given in first approximation
by

�BK
2 = �r

2�f�t� , �17�

where the average is calculated on one period T, is a signifi-
cant parameter for the stability of Eq. �16�, in the sense that
the solution is unstable if �BK

2 is less than zero. In terms of �,
�, and �, from Eqs. �11� and �12�, �f�t� is given by

�f�t� = 1 −
12

�2 �1 − �1 − 4������sn2�	t + K;k2� . �18�

It changes from the value 1, for �=0, to the value
1− 12

�2 �sn2�	t+K ;k2�, for �= 1
4��� . Since

FIG. 1. �t vs N for n=N /2 and ��0; for clarity, the points are
joined by segments.

BRIEF REPORTS PHYSICAL REVIEW E 74, 047201 �2006�

047201-2



�sn2 =
1

k2�1 −
E�k�
K�k�

	 , �19�

where E�k� is the complete elliptic integral of the second
kind, one obtains

�f�t� = 1 −
12

�2 �1 + �1 − 4����� �1 −
E�k�
K�k�

	 . �20�

We remark that since 	 and k, which determine the values
of E and K, don’t depend on N, the value of the product
�=���� at which �f�t�=0 is the same for all values of N.
This value is �t=0.2140, just the threshold numerical value
found for large N, by integrating the motion equations.

The behavior of �t as a function of N, shown in Fig. 1,
can be found considering the next term in the expression of
�BK

2 given by the BK method. Instead of Eq. �17� one has

�BK
2 = �r

2��f�t� + �r
2g�t�� , �21�

where

g�t� = 
�
0

t

�f�t�� − �f�dt��2

. �22�

The function �g�t�, as �f�t�, is independent of N. Figure 2
shows that �f�t� and �g�t� are a decreasing and an increas-
ing function of �, respectively. Starting from �=0, the zero
of the function �BK given by Eq. �21� is obtained, for some
value of �, which now depends on r and thus on N, when

�f�t� + �r
2g�t� = 0. �23�

The smallest of these values of � is the threshold value �t of
the N /2 mode with ��0. Since �g�t� is a positive function,
the smallest value of �, at which Eq. �23� admits solution,
occurs when �r assumes its minimum value different from
zero, namely, when r=1. Figure 3 shows the values of �t
found with the BK method with �r=�1 and other values of
�r, as a function of N �even� varying between 4 and 150. The
curve a, corresponding to �1, reproduces exactly the curve
shown in Fig. 1, obtained by the integration of motion equa-
tion: the values of �t, obtained with the two methods, differ
on the fifth figure only. The curve b, corresponding to �2,
starts from N=6, since, for N=4, Eq. �23� has no solution for
this value of �r. For the same reason, the curve c starts from
N=10 and the curve d from N=30.

As is clear from Figs. 1 and 3, the behavior of functions
�f�t� and �g�t� are such that one has an excellent agreement
between the numerical results and the results obtained with
the BK method of averaging, with �r=�1. This shows that
with ��0 there are no other instability mechanisms that
could lower the stability threshold and agrees with the fact
that integration of motion equations shows clearly that, for
���t, the mode r=1 is the first mode that becomes unstable,
triggering the instability of the N /2 mode.

Finally we remark that our numerical and analytical
results confirm that the � mode, in the termodynamic limit,
is always stable, with ��0, if ��0.214/ ���, while for
��0, it is always unstable.
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FIG. 2. �f�t� and �g�t� vs �. FIG. 3. �t vs N; curves a, b, c, and d refer to �r=�1, �2, �3, and
�10, respectively.
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